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We summarize the results of an extensive campaign of direct numerical simulations of
Rayleigh–Bénard convection at moderate and high Prandtl numbers (10−1 � Pr � 104)
and moderate Rayleigh numbers (105 � Ra � 109). The computational domain is a
cylindrical cell of aspect ratio Γ =1/2, with the no-slip condition imposed on all
boundaries. By scaling the numerical results, we find that the free-fall velocity should
be multiplied by 1/

√
Pr in order to obtain a more appropriate representation of

the large-scale velocity at high Pr . We investigate the Nusselt and the Reynolds
number dependences on Ra and Pr , comparing the outcome with previous numerical
and experimental results. Depending on Pr , we obtain different power laws of the
Nusselt number with respect to Ra , ranging from Ra2/7 for Pr =1 up to Ra0.31 for
Pr = 103. The Nusselt number is independent of Pr . The Reynolds number scales as
Re ∼

√
Ra/Pr , neglecting logarithmic corrections. We analyse the global and local

features of viscous and thermal boundary layers and their scaling behaviours with
respect to Ra and Pr , and with respect to the Reynolds and Péclet numbers. We
find that the flow approaches a saturation state when Reynolds number decreases
below the critical value, Res � 40. The thermal-boundary-layer thickness increases
slightly (instead of decreasing) when the Péclet number increases, because of the
moderating influence of the viscous boundary layer. The simulated ranges of Ra
and Pr contain steady, periodic and turbulent solutions. A rough estimate of the
transition from the steady to the unsteady state is obtained by monitoring the time
evolution of the system until it reaches stationary solutions. We find multiple solutions
as long-term phenomena at Ra = 108 and Pr =103, which, however, do not result
in significantly different Nusselt numbers. One of these multiple solutions, even if
stable over a long time interval, shows a break in the mid-plane symmetry of the
temperature profile. We analyse the flow structures through the transitional phases by
direct visualizations of the temperature and velocity fields. A wide variety of large-
scale circulation and plume structures has been found. The single-roll circulation is
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characteristic only of the steady and periodic solutions. For other regimes at lower
Pr , the mean flow generally consists of two opposite toroidal structures; at higher
Pr , the flow is organized in the form of multi-jet structures, extending mostly in the
vertical direction. At high Pr , plumes mainly detach from sheet-like structures. The
signatures of different large-scale structures are generally well reflected in the data
trends with respect to Ra , less in those with respect to Pr .

Key words: Turbulent convection, boundary layer structure

1. Introduction
Owing to its high efficiency, convection is a preferred heat-transfer mechanism in

practical applications and in natural phenomena. In particular, it occurs in a wide
variety of physical circumstances ranging from stellar activities in astrophysics to
natural convection in the atmosphere and Earth’s mantle (see, for example, Ahlers,
Grossmann & Lohse 2009 and references therein). In spite of the great variety
of practical examples, the essential features of thermal convection problems can
be captured by an idealized model: a confined flow between highly conducting
parallel plates heated from below and cooled from above. In this fluid layer, thermal
expansion produces an unstable density gradient, which, if strong enough, generates a
flow referred to as thermal convection or Rayleigh–Bénard convection (Bénard 1900;
Rayleigh 1916). As the temperature difference is increased, the flow progressively
evolves from a steady to an unsteady regime and eventually to turbulence. This
paradigm of thermal convection is generally based on the Boussinesq approximation,
in which the fluid properties are assumed to be constant despite the presence of
temperature gradients, and the effect of the temperature in the momentum equation
is accounted for only in the buoyancy term (see, for example, Tritton 1988).

Rayleigh and Prandtl numbers are the main dimensionless parameters governing
the Rayleigh–Bénard convection, and are defined, respectively, as Ra = gα�T h3/(νκ)
and Pr = ν/κ , where g is the acceleration due to gravity, h is the fluid-layer depth, �T

is the temperature difference, and α, ν and κ are the fluid properties, viz. the thermal
expansion coefficient, the kinematic viscosity and the thermal diffusivity, respectively.
In the presence of a laterally confined fluid layer, another important parameter can
be the aspect ratio (Γ ), which represents the ratio between the maximum horizontal
extent of the system and its depth. Sometimes, especially for low and moderate values
of Ra , details such as the geometry of the flow apparatus also seem to matter (Daya &
Ecke 2001).

The Rayleigh number characterizes the strength of the thermal destabilization
forcing with respect to a viscous stabilizing effect. The Rayleigh number is
proportional to the third power of the fluid-layer thickness across which the
temperature difference is established; therefore, real problems are generally
characterized by very high values of Ra . Accordingly, experiments and numerical
simulations have strived to reach the highest possible Ra values. This has been
achieved at Prandtl numbers in the range 0.7 � Pr � 8, which is typical of gases
or common liquids such as water. In particular, using a very effective experimental
technique to obtain an extensive range of Ra , the highest value reached in controlled
environment was Ra = 1017 (Niemela et al. 2000). This technique exploits the
properties of cryogenic helium gas close to the critical point (Threlfall 1975).
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There are, however, other kinds of ‘fluids’ characterized by very different values
of Pr; for example, Earth’s interior can have Pr varying from 10−2 up to 1020,
say. In particular, the Earth’s mantle is characterized by very high Prandtl numbers
(Pr > 1020) and moderate Rayleigh numbers (105 � Ra � 109) (see, for example, Peltier
1989). The Prandtl number measures the propensity of the fluid to diffuse momentum
in relation to heat, and determines the difference between velocity and temperature
diffusive scales. The influence of the Prandtl number on thermal convection dynamics
is difficult to investigate experimentally, as Pr can be substantially changed mainly
by changing the fluid. Studies following this approach are those of Xia, Liam &
Zhou (2002) and Ahlers & Xu (2001). A different strategy for varying Pr was used
in Niemela et al. (2000), Niemela & Sreenivasan (2003), Roche et al. (2002) and
Ashkenazi & Steinberg (1999). It consists of working close to the critical point
of compressed gas. This technique enables the exploration of the influence of Pr
variations at quite high Ra . However, in both strategies, complications arise from
the great difficulty of maintaining the properties constant across the fluid depth, with
consequent violation of the Boussinesq approximation, especially at high Pr .

Numerical simulations can overcome these issues, even if they face other kinds of
difficulties such as adequate spatial resolution and the integration over sufficiently long
time windows. Some numerical studies, solving the full three-dimensional problem,
deal with varying Pr (Verzicco & Camussi 1999; Kerr & Herring 2000; Schmalzl,
Breuer & Hansen 2002; Breuer et al. 2004; Calzavarini et al. 2005). Among these,
only Verzicco & Camussi (1999) imposed the non-slip condition on all the walls,
reproducing the same set-up as experiments. The no-slip condition on the horizontal
plates and the free-slip condition on the sidewall were adopted by Breuer et al. (2004)
and Kerr & Herring (2000), while all free-slip surfaces were implemented by Schmalzl
et al. (2002). Periodic boundary conditions characterize the work of Calzavarini
et al. (2005). A smaller number of studies concerns very high Pr . In particular,
Breuer et al. (2004) and Schmalzl et al. (2002) simulated the convective flow up to
Pr = 100, but limited to a fixed Ra . The other works were mainly focused on lower Pr
regimes.

In this work, we report a numerical study on thermal convection for high Prandtl
numbers and moderate Rayleigh numbers for a wide range of Pr and Ra (see
figure 1). The upper bounds of the Ra–Pr interval explored were limited by computing
resources. High-Pr simulations are challenging owing to the computational difficulties
in simulating flows which are ‘quasi-Stokes’, characterized by very slow dynamics and
generally strongly affected by numerical instabilities, and, at the same time, also owing
to the need to use highly refined grids required for resolving the smallest scales of the
temperature field. One generally deals with only one of these issues at a time, but in
this kind of study, all are present simultaneously.

The aim of this study is to provide additional data in a range of Ra and Pr not
yet adequately explored, and to contribute to the understanding of such a complex
dynamical system, consisting of large-scale circulations and plume structures, viscous
and thermal boundary layers, and apparently irregular turbulent motion. In particular,
we report the behaviour of the Nusselt number (Nu). The Nusselt number is the
ratio by which the heat flux is enhanced with respect to the conductive value, and it
represents a principal diagnostic of thermal convection problems. At high Pr , generally
a small dependence of Nu on Pr has been theoretically predicted (Shraiman & Siggia
1990; Grossmann & Lohse 2001) and empirically found (Verzicco & Camussi 1999;
Xia et al. 2002), although there are some differences in the absolute strength of the Pr
effect. In order to correctly capture this small dependence, particular care has been
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Figure 1. Map of performed simulations compared to the map of some recent numerical
and experimental work at high Pr .

devoted to the choice of the grid size and to the evaluation of the errors affecting the
data.

Since Nu is essentially determined by the drop of temperature close to the horizontal
plates, the features of the thermal boundary layers represent a central issue in the
investigation of the Nu behaviour. The role of the viscous boundary layers seems to
be less fundamental. Indeed, even when free-slip conditions are imposed on the walls,
convective phenomena still occur without significantly changing their characteristics
(Verzicco 2003). However, when the no-slip condition is imposed on the walls, a
viscous boundary layer develops. Its main effect is a reduction in the heat-transfer
effectiveness (see figure 2 in Verzicco 2003). This implies that the viscous boundary
layer influences the slope of the temperature profile at the wall, and therefore the
thermal-boundary-layer features. We examine the relationship between viscous and
thermal boundary layers by comparing their thicknesses for various Ra and Pr .

Before dealing with the boundary layers, the behaviour of the Reynolds number
(Re) – and, consequently, of the Péclet number (Pe) – has to be analysed. In thermal
convection, Re and Pe are outputs of the problem, since no typical velocity is
imposed on the system. It is worth noting that their meaning here is more complex
than usual, because the convective dynamics, and the corresponding characteristic
velocities, derive from the combination of thermal and momentum dynamics, which
can be driven by advective or diffusive features in different ways. For Pr of the
order of unity, the typical large-scale velocities of the flow are scaled well by the
free-fall velocity U =

√
gα�T h (Prandtl 1952; Tritton 1988; Niemela et al. 2001;

Verzicco & Camussi 2003; Brown & Ahlers 2009), which results from the balance
between the inertial and buoyancy terms of the momentum equation. For high
Prandtl numbers, however, the momentum tends to be very diffusive and inertial
forces become small; accordingly, the present simulations at high Pr showed that
U does not represent the typical velocity of the large-scale structure. By scaling the
results, we have found that the large-scale characteristic velocity is V = U/

√
Pr , which
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yields a more suitable non-dimensional form of the Boussinesq equations at high Pr .
The corresponding estimate of the Reynolds number is Re =V h/ν =

√
Ra/Pr . As a

consequence, the Péclet number, Pe =V h/κ =
√

Ra , becomes independent of Pr . To
verify the reliability of these estimates, the results of all the performed simulations
have been analysed carefully.

In the range of Ra and Pr explored in this study, we found steady, periodic and
turbulent solutions. The transition from one convective state to another represents an
open and fascinating problem, especially in small-aspect-ratio cells (Γ � 1) where the
flow structures strongly depend on system geometry. Almost all pattern-formation
studies concern convective systems of large aspect ratio (Γ � 1) (Bodenschatz, Pesch &
Ahlers 2000). For cells of moderate aspect ratio (1 � Γ � 10), a brief review, concerning
the work on the early convective states, can been found in Boronska & Tuckerman
(2006). Through experiments, numerical simulations and theoretical calculations, the
work just cited mainly provides a stability analysis of convective states. In particular,
it shows that the critical Ra for the onset of motion steeply increases above the
theoretical value (obtained for Γ → ∞) when Γ decreases below 2 (Charlson &
Sani 1970). Other results are that non-axisymmetric motions appear in the early
convective state when Γ is sufficiently small (Γ � 1.6) (Hardin & Sani 1993; Oresta,
Stringano & Verzicco 2007); several different stable patterns are possible for the
same final Ra and Pr (Hof, Lucas & Mullin 1999; Boronska & Tuckerman 2010);
periodic behaviour occurs through a secondary bifurcation (Clever & Busse 1974;
Croquette, Gal & Pocheau 1986; Rudiger & Feudel 2000). Our simulations support
these findings. We propose a qualitative description of convective states and of flow
patterns found in our simulations at a high Prandtl number. A rough estimate of the
transition from a steady to an unsteady flow has been found in simulations close to
this transitional regime, by monitoring the time evolution of the system. The main
features of the convective structures of the unsteady solutions have been analysed
through temperature and velocity-field visualizations.

This paper is organized as follows. The set-up of the problem, the grid-sizing
criteria and the checks of the data set are presented in § 2. A qualitative picture
of the transitional phases and the flow structures is provided in § 3. The Nusselt-
number behaviour with respect to Ra and Pr is shown in § 4. In § 5 we discuss the
characteristic velocity and show the Re and Pe behaviours. In § 6 we deal with the
viscous- and thermal-boundary-layer thicknesses, their relation with respect to local
and global definitions, their trends with respect to Ra and Pr , and to Re and Pe.
Concluding remarks are given in § 7.

2. Numerical set-up
2.1. Governing equations and numerical code

The computational domain consists of a cylindrical cell of aspect ratio (i.e. ratio
of the diameter to the cell height) Γ =1/2. Cold and hot fixed temperatures are
imposed on the top and the bottom plate, respectively. The sidewall is adiabatic and
all the cell surfaces satisfy the no-slip condition. This set-up is the same as previous
experiments (see, for example, Castaing et al. 1989; Niemela et al. 2000; Ahlers & Xu
2001; Niemela & Sreenivasan 2003 and Chavanne et al. 2001) and numerical works
(see, for example, Verzicco & Camussi 1999, 2003), allowing a proper comparison of
the results.

The flow is solved by the numerical integration of the three-dimensional
time-dependent Navier–Stokes equations under the Boussinesq approximation. In
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particular, the numerical code is based on the following non-dimensional form of the
equations:

Du
Dt

= −∇p + Θ k̂ +

(
Pr

Ra

)1/2

∇2u, ∇ · u = 0,

DΘ

Dt
=

1

(PrRa)1/2
∇2Θ,

⎫⎪⎪⎬
⎪⎪⎭

(2.1)

where D/Dt = ∂/∂t + u · ∇ is the material derivative, k̂ the unit vector pointing
in the opposite direction with respect to gravity, u the velocity vector, p the
pressure separated from its hydrostatic contribution and Θ the non-dimensional
temperature. The equations have been made non-dimensional using the free-fall
velocity U =

√
gα�T h, where h is the distance between hot and cold plates and their

temperature difference is �T = Th −Tc; Th is the temperature of the hot (bottom) plate
and Tb is that of the cold (top) plate. The non-dimensional temperature Θ is defined
by Θ = (T − Tc)/�T and its range is 0 � Θ � 1. The dimensional temperature and
velocity are indicated by T and u∗, to distinguish them from their non-dimensional
forms Θ and u. Hereafter, the overbar denotes the time average; the spatial averages
are indicated by 〈 〉A and 〈 〉V for area and volume averaging, respectively; the total
average over time and space is denoted by 〈 〉 without subscripts.

The Nusselt number is calculated by averaging in space and time the non-
dimensional heat flux in the vertical direction, Qz =Qz(x, t), which is defined in
terms of non-dimensional quantities as follows:

Qz = −∂Θ

∂z
+ PeΘuz. (2.2)

In particular, Nu =
〈
Q̄z

〉
A

= 〈Qz〉, since the time-averaged heat flux must be constant
across each horizontal section A.

Numerical simulations have been performed using the same code as in Verzicco &
Camussi (2003). This code, written in cylindrical coordinates and based on a second-
order finite-difference scheme, is described in detail in Verzicco & Orlandi (1996)
and Verzicco & Camussi (1997). Actually, the code has been slightly improved with
respect to its damping properties of the error propagation. The original time-scheme
coefficients have been replaced by those proposed by Spalart & Moser (1991). This
alteration was necessary to limit the strong numerical instabilities found to affect
high-Pr simulations. (Details on this aspect can be found in Silano 2009.)

2.2. Grid resolution

The mesh size must be set to be of the same order as the smallest scale of the
problem, these being the dissipative scales. Care has to be devoted to the boundary
layers, which must be adequately resolved near the solid surfaces, and to possible
thin flow structures (plumes) penetrating the bulk region, which need adequate grid
resolution in the azimuthal direction also (Stevens, Verzicco & Lohse 2010).

High-Pr flows are generally characterized by high Péclet numbers (Pe) and small
Reynolds numbers (Re), and so the temperature scales are expected to be much
smaller than the velocity scales. Equivalently, the thermal-boundary-layer thickness
(δT ) is expected to be smaller than the viscous-boundary-layer thickness (δU ); and the
thermal dissipation scales are smaller than the viscous dissipation ones. We assumed
that the Batchelor scale, ηB = ηPr−1/2 (Batchelor 1959) – with η being the Kolmogorov
scale (Kolmogorov 1941) – is the smallest temperature scale for convective flows at
high Pr (Pr � 1). This assumption is motivated by the fact that the temperature



Rayleigh–Bénard convection for a range of Prandtl and Rayleigh numbers 415

Ra Nu δTrms
/h ηB/h nθ nr nz ∆min ∆mean ∆max NδTrms

105 3.47 ± 0.01 0.1768 0.0450 109 18 70 0.0047 0.0111 0.0138 13
106 8.02 ± 0.08 0.0617 0.0195 101 25 101 0.0028 0.0089 0.0122 10
5 × 106 13.13 ± 0.16 0.0410 0.0114 101 25 101 0.0028 0.0089 0.0122 7
107 16.26 ± 0.17 0.0335 0.0090 129 31 136 0.0020 0.0069 0.0094 8
108 33.68 ± 0.20 0.0164 0.0042 385 81 321 0.0005 0.0026 0.0037 12
109 66.58 ± 1.59 0.0082 0.0020 385 81 321 0.0004 0.0025 0.0040 12

Table 1. A posteriori check of the grids. The values correspond to the actual solutions
at Pr = 103. The Nusselt number Nu is reported together with its error bar. The
thermal-boundary-layer thickness, δTrms

, is derived from the root mean square (r.m.s.) of the
temperature profile. The Batchelor scale ηB is calculated using the total dissipation rate 〈ε〉.
The number of grid points in the azimuthal, radial and vertical directions are, respectively,
nθ , nr and nz. The typical grid size is ∆ = (2πr�θ�r�z)1/3, with ∆min , ∆mean and ∆max

corresponding to its minimum, mean and maximum values. NδTrms
represents the number of

points inside the thermal boundary layer.

(active scalar) seems to behave as a passive scalar at dissipative scales (Niemela et al.
2001; Zhou & Xia 2008). Thus, the grids were set for resolving the Batchelor scale
in the bulk region. In agreement with the most accurate numerical works (Emran &
Schumacher 2008; Shishkina & Wagner 2008; Shishkina & Thess 2009; Stevens et al.
2010), 7–15 points were clustered inside the thermal boundary layers. For the few
simulations at Pr < 1, the Kolmogorov scale has been considered as limiting the
resolution instead of the Batchelor scale, since in that case, the viscous dissipation
scale is expected to be smaller than the thermal dissipation scale (Verzicco & Camussi
2003). Note that at Pr < 1, the Obukhoff–Corrsin scale, ηC = ηPr−3/4, should represent
the thermal dissipation scale instead of the Batchelor scale (Batchelor 1959). For the
simulations at Ra = 108, a more uniform grid has been chosen, by increasing the
relative number of points in the azimuthal direction with respect to the vertical
direction, in order to correctly resolve the thin sheet-like structures characterizing
the unsteady solutions at high Pr (see later). Because of computational constraints,
the grids for simulations at Ra = 109 have been set with the same number of points
as the grids for simulations at Ra =108. Since the flow at higher Ra has thinner
boundary layers, more points were clustered close to the walls in the former case. It
is worth pointing out that the grid resolution at Ra = 109 is indeed adequate, since
in Stevens et al. (2010), a mesh with a comparable number of points (385 × 97 × 385)
was employed at Ra =2 × 109 and the results converged to those on a grid of size
513 × 129 × 513.

The grids were generally chosen to be the same for Pr � 1. Indeed both the
Batchelor scale and the thermal-boundary-layer thickness were expected to be almost
independent of Pr for high Pr . These predictions were obtained by estimating the
Batchelor scale and the thermal-boundary-layer thickness in terms of the Nusselt
number:

ηB/h = (1/Ra(Nu − 1))1/4, (2.3)

δT /h = 1/(2Nu), (2.4)

and taking into account that Nu is a very weak function of Pr for Pr � 1 (Verzicco &
Camussi 1999; Xia et al. 2002). The relationship (2.3) can be easily derived by
substituting the exact relation 〈ε〉 = (ν3Ra/h4Pr2)(Nu − 1) (Shraiman & Siggia 1990)
into the definition of the Batchelor scale, ηB =(ν3/ 〈ε〉)1/4Pr−1/2, where 〈ε〉 is the
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Figure 2. Batchelor scale as a function of Pr for Ra = 107 (a), Ra = 108 (b) and Ra = 109

(c). The Batchelor scale is calculated using different values of the viscous dissipation rate
field ε = ε(x, t). Filled circles: total value 〈ε〉; open circles: maximum value of the mean field

max[ε̄]; filled squares: time-averaged peak value max[ε]; open squares: peak value max[ε].
The solid line represents ∆min , the dashed line indicates ∆mean and the dotted–dashed line
represents ∆max .

total viscous dissipation rate. The relationship (2.4) holds exactly when the thermal-
boundary-layer thickness is based on the tangent to the temperature profile (Ahlers,
Grossmann & Lohse 2009). The relations (2.3) and (2.4) were used for the a priori
estimate of the grid size. Table 1 lists the flow and grid parameters of the simulations.

The near independence of ηB/h and δT /h of Pr was confirmed by the actual results
(figures 2 and 24). It is worth noting that the independence of the Batchelor scale
with respect to Pr is basically valid even if other definitions of the dissipation rate are
used to calculate the Batchelor scale. Even in the worst case of considering the peak
dissipation values, a saturation value is reached for sufficiently high Pr . Moreover,
the minimum local Batchelor scales (squares in figure 2) and the thermal-boundary-
layer thicknesses (figure 24) slightly increase with increasing Pr before saturation,
suggesting more constraining conditions in terms of grid resolution at Pr � 1 rather
than at higher Pr . This is somewhat counterintuitive since the common expectation
is to have decreasing temperature scales for increasing Pr; indeed the Péclet number,
Pe = RePr , is usually found to increase with Pr (see, for example, Grossmann &
Lohse 2001 and Xia et al. 2002). However, one has to take into account that the
Batchelor scale is based on the viscous dissipation rate ε = ν (∇u∗ : ∇u∗), while the
dissipation of the temperature field is, in fact, measured by the thermal dissipation
rate εT = κ (∇T · ∇T ). In spite of the strong relationship between the mean values (〈ε〉
and 〈εT 〉 are analytically related through the Nusselt number), the two dissipation
fields do not seem to be connected locally. Indeed, in agreement with the results
of Stevens et al. (2010), we found that peaks of εT are localized close to the top
and bottom plates, while peaks of ε are also situated close to the sidewall (inset of
figure 10c), where, in contrast, εT is quite small (inset of figure 9c).

The local disconnectedness between thermal and viscous dissipation rates could not
be simply due to the strong anisotropy characterizing the flow and due to the presence
of walls. Indeed, peaks of εT have also been found far from peaks of ε for passive scalar
mixing in homogeneous and isotropic turbulent flows (Schumacher, Sreenivasan &
Yeung 2005). An indication of the loose local correspondence between ε and εT is given
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Figure 3. Probability density function averaged in time and calculated on the whole volume
of the dissipation rates normalized by the mean values. The p.d.f. of viscous dissipation,
ξ = ε/〈ε〉, and that of thermal dissipation, ξT = εT /〈εT 〉, are calculated at Ra = 109 and varied
Pr . Red: Pr = 103; green: Pr = 102; blue: Pr = 101; orange: Pr = 100. The inset shows the
same curves plotted using a linear scale in the abscissa.

by the different shapes of their probability density functions (p.d.f.s) (see figure 3). This
means that a local definition of the Batchelor scale is not useful for a comparison with
the local grid size. (In a more general setting, the appropriateness of the Batchelor
scale for high Prandtl numbers has been examined by Donzis, Sreenivasan & Yeung
(2010).) For this reason, the data check is limited to global values, and the typical grid
sizes shown in figure 2 (vertical lines) are significant only with respect to the global
Batchelor scale (filled circles). Nevertheless, the data trends can give a qualitative
indication on the correctness of the grid-sizing criteria adopted above. Figure 3 shows
the p.d.f.s of the thermal and viscous dissipation fields at different Pr . The p.d.f.s,
calculated on the whole volume and averaged in time, are performed with respect
to normalized values, ξ = ε/〈ε〉 and ξT = εT /〈εT 〉. The tail of the thermal-dissipation
p.d.f. is less pronounced as Pr increases, following a similar relative behaviour of the
tails of viscous dissipation p.d.f.s, indicating that, with increasing Pr , the simulations
need less constraining requirements of grid resolutions. This is confirmed by the
checks of the error affecting the Nusselt number. This error is defined as follows. The
Nusselt number is calculated as the average of the values obtained in different ways:
through its relationships with the viscous and thermal dissipation rates, averaging
the non-dimensional heat flux in the vertical direction at each horizontal section
of the cell, as well as in the whole volume. The difference between the maximum
and the minimum of this set of values is considered to be the Nu error bar.

These error estimates represent a good check of the results, since the derivative
fields are also involved. A similar check has been performed by Stevens et al. (2010),
Verzicco & Camussi (2003) and Calzavarini et al. (2005). In our case, we obtain quite
satisfactory results. Indeed, the Nu error bar is generally less than 3 % of the mean
value. (For steady simulations, the error percentage decreases below 1 %.) Somewhat
poorer results are obtained only at Pr < 1 (Ra = 107) and at Ra = 109. However, at
Ra = 109, the error bar is less than or equal to 5 % except at Pr =1. In this last case



418 G. Silano, K. R. Sreenivasan and R. Verzicco

104 105 106 107 108 109 1010 1011 1012 1013

Ra

105

104

103

102

101

100

10–1

10–2

10–3

Pr

109 × 18 × 70

101 × 25 × 101

161 × 26 × 101

129 × 31 × 136

121 × 45 × 201

201 × 45 × 201

217 × 55 × 217

217 × 75 × 301

385 × 81 × 321

Figure 4. Map of simulations performed in a cylindrical cell of aspect ratio Γ = 1/2. The
legend shows the corresponding number of grid points in the azimuthal, radial and vertical
directions. The vertical solid line represents the critical Ra for the onset of convection (Oresta
et al. 2007). The dashed line represents the threshold Ra to pass from a steady to an unsteady
flow.

and for the two simulations at Pr < 1, the error bar is around 8–10 %. It is, however,
at least three times smaller than the typical time variability of the Nu signal (the
r.m.s. of Nu being around 30 % of the mean).

The above results are, however, self-referential. In fact, if the solutions are not
correctly resolved, the results can be wrong and therefore also the check of the errors
can be misleading. The only reliable check in order to assess the grid independence
of the solutions is a grid-refinement analysis. It has been applied extensively (see
figure 4), verifying that the results obtained with coarser grids are within the error
bars of those of more refined grids. In cases for which it was not possible to evaluate
an error bar, we required (somewhat arbitrarily but reasonably) the difference between
the coarse and the refined grids results to be less than 5 %.

For the reference simulations at Ra < 107, it has been found that all the quantities
shown in this paper differ by less than 3 % between the coarse and refined grids. The
most critical simulations are, however, at higher Ra , where four reference simulations
have been performed: at Ra = 107 and Pr =100, 103 and at Ra = 108 and Pr = 101, 102.
In these cases, differences equal to or smaller than 3 % have been found for all the
mean values, the time-averaged peaks of the velocity components, and the r.m.s. values
of Nu and velocities. For higher order quantities such as the values of the fluctuating
dissipation rates, the relative error is of the order of 5 %. Table 2 summarizes the
main grids involved in this analysis and shows the values of the Nusselt number
calculated as the total average of the non-dimensional heat flux and the r.m.s. value
of its time signal. Table 2 also shows the percentage of fluctuating dissipation rates
with respect to the total dissipation rates. The fluctuating dissipation rates ε ′ and
ε ′
T are calculated by, respectively, using u′ = u − ū and Θ ′ =Θ − Θ̄ , representing the

fluctuations of the velocity and temperature fields with respect to the mean flow.
Where available, the solutions obtained by the most refined grids have been used

in the following analysis of the results.
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Ra Pr nT r/nT c nθ nr nz Nu r.m.s.[Nu] % ε ′/ 〈ε〉 % ε ′
T / 〈εT 〉

107 100 18.4 129 31 136 17.620 4.593 78.05 27.76
385 81 321 17.639 4.531 78.25 27.93

107 103 4.8 129 31 136 16.264 1.461 5.57 2.94
217 55 217 16.227 1.415 5.32 2.78

108 101 2.0 217 75 301 31.594 3.561 60.10 17.43
385 81 321 31.507 3.584 59.82 17.38

108 102 2.0 217 75 301 33.408 2.164 73.37 15.55
385 81 321 33.240 2.127 75.26 16.36

Table 2. Grid sensitivity. Comparison of coarse and refined grid results. The Nusselt number
is calculated as Nu = 〈Qz〉; r.m.s.[Nu] is the rms value of the Nu signal; ε′ and ε′

T are the
fluctuating dissipation rates; nT r/nT c is the ratio of the total number of grid points for refined
and coarse grids.

2.3. Time windows

The simulations were generally started from previous solutions at lower Pr . The
steady and periodic solutions were run until stable values of all the quantities were
reached. In particular, the simulations were continued until the signal of the volume-
averaged temperature, after reaching a constant value, maintained its first six digits
unchanged for at least 100 convective times. The convective time is here taken as
τc = τ

√
Pr , where τ = h/U is the free-fall time (see § 5 for details).

The remaining unsteady simulations have been run for sufficiently long time
windows to obtain statistically converged quantities. In particular, after the initial
transient, each simulation was continued for at least 500 τc. This, however, represented
a minimum requirement, because long-term phenomena appeared evident in the signal
of volume-averaged temperature. So longer simulations, typically of the order of
1000–2000 τc, were performed with the aim of exploring this behaviour. In particular,
at Ra = 108, long-period oscillations were found to arise in the volume-averaged tem-
perature signal as Pr increases, while oscillations at convective time scale were found
to smooth out (see figure 5). A discussion on this aspect is provided later in this paper.

In agreement with Oresta et al. (2007), the maximum time step was set at least
50 times smaller than the free-fall time (�t/τ < 0.02). However, this condition is
generally far from the actual time-step size, which is much smaller (by one or two
orders of magnitude, depending on the regime simulated) and determined by the
stability condition of the time scheme of the code.

The computational limitations in this study were mainly due to the duration of
simulations at high Pr rather than due to the grid size, which was kept almost the
same for Pr � 1. Indeed, once the grid was fixed, obtaining a convective time unit for
simulations at high Pr with respect to those at Pr � 1 required a larger computational
time. In particular, simulations at Pr = 103 were almost 30 times longer with respect
to those at Pr = 1.

3. Transitional phases and flow structures
3.1. A qualitative picture of transitions

The fluid starts moving only when the destabilizing forces due to heating exceed the
opposing viscous and thermal effects. The motionless state is stable only below a
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Figure 5. Signal of volume-averaged temperature at Ra = 108 for varied Pr . The signal
shows long-term phenomena for large Pr .

critical Ra value, which depends on the aspect ratio Γ and the geometry of the cell,
but is independent of Pr (Chandrasekar 1961). For a cylindrical cell with Γ = 1/2,
the critical Ra is an order of magnitude higher than the theoretical value relative to
an infinitely extended layer of fluid. Its estimate was numerically computed by Oresta
et al. (2007): RaC � 2.35 × 104 (solid line in figure 4).

Above RaC , steady convective motions appear. In agreement with results concerning
cells of high aspect ratio (Krishnamurti & Howard 1981), the steady state persists
for a longer Ra interval as Pr increases. At Pr =103 we found that the threshold
value (RaU ) for the transition from a steady to an unsteady flow is approximately
equal to RaU ≈ 7.5 × 106 (7 × 106 < RaU < 8 × 106). A rough estimate of RaU was also
obtained at lower Pr: 2 × 106 < RaU < 3 × 106 at Pr =10, and 5 × 106 < RaU < 6 × 106

at Pr = 102. Using also the results of previous simulations performed by Oresta et al.
(2007) at lower Pr , it was possible to derive an estimate of RaU on a wide range
of Pr (dashed line in figure 4). In contrast to RaC for the onset of motion, RaU for
the transition from a steady to an unsteady flow increases with Pr until a saturation
value is attained for Pr � 102.

In the range explored (10 � Pr � 103), the unsteady state appears as a locally
periodic motion. This result agrees with the previous results obtained at lower Pr
(Verzicco & Camussi 1997; Oresta et al. 2007). We distinguish between steady and
periodic solutions by checking if the signals of local quantities are steady or periodic
when the signal of the volume-averaged temperature reaches a steady state (figure 6),
since the volume-averaged temperature signal is steady even when the flow is periodic.
The identification of RaU is, however, only approximate since the closer the Ra is
to RaU , the longer is the relaxation time of the system. This implies that very long
simulations must be carried out in order to distinguish the slowly damped oscillations
from the sustained ones. However, very precise calculations could be meaningless.
Indeed, the strong sensitivity to the initial condition and to the grid size which
generally affects these threshold values introduces a degree of uncertainty, which is
unavoidable in this kind of approach.
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Figure 6. Time signals before and after the transition from the steady to the unsteady flow at
Pr = 103. (a) Vertical velocity signal measured in an inner point xs of the cell (xs =(θs, rs, zs)
with θs =0, rs = 0.2 and z =0.1). The inset is a zoom showing the time variation of the signal
on an enlarged time scale. (b) Volume-averaged temperature signal. All the shown quantities
are made non-dimensional according to (5.1).

With increasing Ra , the picture becomes less neat because the simulations are too
sparse. One observes some isolated peaks in the spectrum of the Nusselt-number
signal even in simulations which have lost periodicity features. Figure 7 shows the Nu
signals and the corresponding spectra for the three unsteady solutions at Pr = 103.
With increasing Ra , the spectra fill the gaps between the peaks until a continuous
spectrum is obtained. Even at Ra =109 and Pr = 103, the flow shows some turbulent
features since the dissipation rate of the velocity fluctuations becomes the main
contribution to the total viscous dissipation rate (figure 8a). Even the contribution
of the fluctuations to the total heat flux dominates with respect to the mean flow
contribution in the bulk region (figures 8b and 8c). The different shape of the profiles
in figure 8(c) simply reflects the different mean flow structures found at different Pr
(see § 3.2).

At Pr = 103 and Ra = 108, although the flow possesses detached plumes and an
apparent degree of disordered motion (see later), the mean flow dominates with
respect to the fluctuating component (figures 8a and 8b). At lower Pr , instead, the
flow presents stronger turbulent features as Pr decreases. The scatter in the fluctuating
dissipation rate with Pr in figure 8(a) is ascribed to the different mean flow structures,
which affect the data trends especially at lower Ra .

Figure 8(a) shows that the main contribution to the thermal dissipation rate is
due to the mean flow, even at the lowest Pr and the highest Ra , when the degree
of turbulence should be higher. In particular, the largest contribution to the thermal
dissipation comes from the regions close to the horizontal plates (figure 9a), because
of the strong temperature gradients in the thermal boundary layers. The temperature
fluctuations close to the plates are not very effective in terms of thermal dissipation
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Figure 9. (a) Fraction of thermal dissipation rate which occurs in the bulk (open triangles)
and close to the horizontal plates (filled triangles) at Ra = 109 and increasing Pr . The separation
between the bulk and the thermal-boundary-layer region has been fixed at a distance of 1/50
of the cell depth from the top and the bottom plate, in a way to include the stronger thermal
dissipation gradients in the thermal-boundary-layer region. It has been verified that moderate
variations of this depth do not significantly affect the data trend. (b) Fraction of the turbulent
thermal dissipation rate which occurs in the bulk (open triangles) and close to the horizontal
plates (filled triangles) at Ra = 109 and increasing Pr . (c) Vertical profiles of the total thermal
dissipation rate (open symbols) and of the turbulent thermal dissipation rate (filled symbols) at
Ra = 109 and Pr = 1 (squares) and Pr = 103 (circles). Inset: corresponding horizontal profiles
of the total thermal dissipation rate. In panels (a) and (b), a 3 % tic is reported that is an
estimate of the error bar.

(figures 9b and 9c). On the contrary, in the bulk region, the thermal dissipation rate
is mainly due to the temperature fluctuations (figure 9b).

In the case of the viscous dissipation rate, the fluctuating components of the flow
produce a significant contribution not only in the bulk, where the largest part of the
viscous dissipation occurs (figure 10a), but also very close to the walls (figures 10b
and 10c). This implies a high effectiveness of the fluctuating component of the flow
in the dissipation of the kinetic energy even in the viscous boundary layers, where
the flow is generally considered to be laminar. The mean-flow effectiveness decreases
with increasing Ra and decreasing Pr .

In conclusion, at sufficiently high Ra , the flow mainly behaves as turbulent in the
bulk region both in the viscous and thermal dissipation rates while, close to the
walls, it generally maintains turbulent-like features in the viscous dissipation rate and
behaves laminar-like in the thermal dissipation rate.

3.2. Flow structures and multiple solutions across transitional phases

During the steady phase, the flow is characterized by different flow structures. In
figure 11, the top row shows the typical patterns of the steady solutions at Pr = 103

and increasing Ra . After the onset of motion, the flow pattern is the same as for lower
Pr (Verzicco & Camussi 1997): a single smooth roll filling the whole cell (figure 11a).
The temperature iso-lines tend to be bent.

With increasing Ra , in addition to the single roll, smaller vortices appear at the
edges of the top and bottom plates, and the big central roll appears deformed, like
twisted in the azimuthal direction. The temperature iso-lines are no longer stratified
(figure 11b). The single-roll structure deformed by an azimuthal torsion appears
as one among many possible multiple steady solutions having a lower or a higher
degree of deformation. Indeed, we found at Ra = 2 × 106 and Pr =102 two steady



424 G. Silano, K. R. Sreenivasan and R. Verzicco

3 % 3 %

0.01

0.02

z/
h

103

(a) (b) (c)

102

101

100

Pr

103

102

101

100

Pr

〈εbl〉/〈ε〉, 〈εbu〉/〈ε〉 
0.20 0.4 0.6 0.8 1.0

〈ε′
bl〉/〈εbl〉, 〈ε′

bu〉/〈εbu〉 
0.20 0.4 0.6 0.8 1.0 0 1 2 3 4 5 6 7 8 9 10

〈ε′〉A/〈ε〉, 〈ε〉A/〈ε〉 

〈ε〉
r,
θ
/〈ε

〉 

r/h
0.22
0
1
2
3
4
5
6
7

0.23 0.24 0.25

Figure 10. (a) Fraction of viscous dissipation rate which occurs in the bulk (open triangles)
and close to the horizontal plates (filled triangles) at Ra = 109 and increasing Pr . The separation
between the bulk and the thermal-boundary-layer region has been fixed at a distance of 1/50
of the cell depth from the top and the bottom plate and from the sidewall, in a way to include
the stronger viscous dissipation gradients in the viscous-boundary-layer region. It has been
verified that moderate variations of this depth do not significantly affect the data trend. (b)
Fraction of the turbulent viscous dissipation rate which occurs in the bulk (open triangles)
and close to the horizontal plates (filled triangles) at Ra = 109 and increasing Pr . (c) Vertical
profiles of the total viscous dissipation rate (open symbols) and of the turbulent viscous
dissipation rate (filled symbols) at Ra = 109 and Pr = 1 (squares) and Pr = 103 (circles). Inset:
corresponding horizontal profiles of the total viscous dissipation rate. In panels (a) and (b), a
3 % tic is reported that is an estimate of the error bar.

solutions, mainly consisting of a single-roll structure, one with and the other without
an azimuthal torsion. The same situation occurs at Ra = 2 × 106 and Pr = 10. Checks
performed using several grids and different initial conditions confirm these results.
On the other hand, the possibility of multiple solutions has been widely verified by
Boronska & Tuckerman (2010).

Before the onset of unsteady motion, the flow mainly consists of a single untwisted
roll. The fluid temperature appears almost uniform in the bulk, while the hotter fluid
rises along one side of the lateral wall and the colder fluid falls along the other
(figure 11c). When the hotter and colder fluids meet at the edges of the plates, they
form small eddies.

Increasing Ra further, there is a transition from the steady to unsteady flow. The
unsteadiness at Pr =103 appears in the flow as a couple of small hot and cold waves
(hills) along the top and bottom plates. Travelling around the single-roll structure,
they tend to detach along the sidewall forming hot and cold blobs, which force the
formation of the subsequent couple of waves when they reach the corresponding
opposite plate (figure 11d ). With a slight increase in Ra , the blobs become more
bulging. This travelling-wave phenomenon corresponds to local periodic solutions.

Following single-roll periodic solutions, at higher Ra , we found strongly three-
dimensional structures different from single-roll structures. In particular, at Pr < 102,
the solutions mainly show toroidal ring structures attached to the horizontal plates.
At Pr � 102, the simulations show structures mainly developing in the vertical
direction. However, the instantaneous solutions are generally strongly unsteady and
characterized by plume emissions (figures 11e and 11f ). For Pr =1, the temperature
maps show plumes that randomly appear in various azimuthal positions on top and
bottom plates (figure 12a). The flow is swept by unstructured recirculations, which



Rayleigh–Bénard convection for a range of Prandtl and Rayleigh numbers 425

(a) (b) (c)

(d) (e) ( f )

Figure 11. Flow structures at Pr =103. (a) Ra = 105; (b) Ra = 2 × 106; (c) Ra = 7 × 106;
(d ) Ra = 8 × 106; (e) Ra = 108; (f ) Ra = 109. The colour map represents the temperature
field and saturates at higher and lower temperatures: 0 � Θ � 0.2 (blue); 0.8 � Θ � 1 (red);
Θ = 0.5 (white); 0.2 < Θ < 0.8 (linear blue-white-red scale). The arrows show the velocity
vectors tangent to the vertical section.

carry the hot and cold fluid portions up to the corresponding opposite plates mainly
along the sidewall. The corresponding mean flow is axisymmetric, consisting of two
toroidal structures, with the flow descending along the axis and ascending along the
sidewall in the bottom half of the container, with the opposite in the top half. When
averaged, the hot flow remains confined in the bottom half of the container and the
cold flow in the top one. In contrast, at Pr = 103, the flow recirculations are driven by
vertical jets fed by plumes detaching mainly from sheet-like structures and clustering
in some nodal points (figure 12b). The plumes penetrate higher into the bulk region as
Pr increases. The average effect is a mean flow which presents at higher Pr portions
of the hottest (coldest) fluid close to the opposite cold top (hot bottom) plate.
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Figure 12. Flow structures at the horizontal sections close to the bottom plate for Ra = 109.
(a) Pr = 1 and (b) Pr = 103. The colour map saturates at higher and lower temperature:
0 � Θ � 0.2 (blue); 0.8 � Θ � 1 (red); Θ = 0.5 (white); 0.2 <Θ < 0.8 (linear blue-white-red
scale). Black solid line: Θ = 0.5.

The variety of these structures for increasing Ra affects the data trends, which
generally show an irregular behaviour.

At Ra = 108 and Pr = 103, we found another example of multiple solutions, this
time in the form of long-term variations. The main dynamics of the problem develop
on the convective time scale, which is the typical scale of large flow circulation and
plume detachment. Long-time phenomena, however, appear in some simulations, as
already mentioned in § 2.3. In particular, the volume-averaged temperature signal
shows anomalous variations on a time scale much longer than the convective time
scale at Ra = 108 and increasing Pr (see figure 5).

At Pr = 103 and Ra =108, the long-term variations in the volume-averaged
temperature signal are more pronounced, and correspondingly we found different
large-scale circulation structures. Roughly dividing the volume-averaged temperature
signal into four time windows (top of figure 5), and neglecting the first interval that
can be considered to be a transient, in the second time interval, the volume-averaged
temperature is almost constant. During this interval, the flow is stably self-organized
in a four-jet structure (figures 13a and 13d ). In the next interval, the flow shows a
more unstable behaviour, during which a six-jet structure prevails (figures 13b and
13e). In the last interval, the flow evolves into a nine-jet structure (figures 13c and
13f ) which is quite stable in time.

Variations of the volume-averaged temperature signal with respect to the mean
value of 1/2 indicate a breaking of symmetry in the temperature profile. At Ra = 108

and Pr > 102, the flow fluctuations become negligible with respect to the mean
values (figures 8a and 8b). The large-scale structures are quite fixed in time, and the
corresponding vertical profiles, when symmetric, remain so as well. If these structures
destabilize, the recovery of the symmetry can be a long process owing to the prevailing
diffusive dynamics of momentum with respect to advection (low Reynolds number).
An interesting result is that, at Ra = 108 and Pr = 103, a quite stable and well-defined
large-scale structure seems to be allowed with non-symmetric profiles (see figure 14).
The figure shows the temperature profiles of the four-jet symmetric structure (solid
lines) and of the nine-jet asymmetric structure (dashed lines).

The nine-jet structure is characterized by a 5 % positive shift of the central
temperature with respect to the mean value of 1/2. This deviation is small but
is beyond convergence errors concerning the total mean temperature. This structure
is characterized by an ascending central jet which causes an asymmetry between the
rising and descending flows (figure 13f ). There already exist examples of axisymmetric
problems in which the presence of a central jet induces a strong deviation (∼25 %)
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Figure 13. Multiple flow structures at Ra = 108 and Pr = 103. (a, b and c) The temperature
map at the sidewall of typical snapshots, respectively, belonging to the time windows a, b and
c of figure 5 (top). The cylindrical sidewall is unrolled with respect to the azimuthal direction
obtaining two-dimensional plots. Black solid lines represent mean temperature iso-lines. (d, e
and f ) The mean-flow structures at the mid-plane obtained by averaging the time windows a,
b and c of figure 5 (top). Solid lines: positive vertical velocity; dashed lines: negative vertical
velocity; thin dotted lines: zero vertical velocity.
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Figure 14. Temperature profiles of the four-jet structure (solid lines) and the nine-jet structure
(dashed lines) at Ra = 108 and Pr = 103. Left inset: zoom at the top plate; right inset: zoom at
the bottom plate.

of the central temperature from the mean value of the top and bottom temperatures
(Umemura & Busse 1989). However, the case studied analytically by Umemura &
Busse (1989) consists of a simplified structure, with an ascending (descending) central
jet and a peripherally descending (ascending) jet, separated from each other by
an isothermal core. The reason for the asymmetry is ascribed to the different heat
transport mechanisms between the central and circumferential jets. The flow is strictly
axisymmentric and governed by steady equations in the infinite Pr limit and with
free-stress boundaries. In the present case, instead, the flow is unsteady, strongly three-
dimensional and characterized by plume emission, and the physical arguments used
by Umemura & Busse (1989) cannot be expected to apply to the present conditions,
also because we obtain a positive deviation of the central temperature in the presence
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of an ascending central jet. Furthermore, the strength of the phenomenon is much
less pronounced in our case.

It is worth noting that, even if the central temperature of the nine-jet structure
is shifted, its slopes approaching the top and bottom plates are basically the same
as those of the temperature profile of the four-jet structure. This implies that the
Nusselt number has to be the same. Also, in the other cases of multiple solutions,
the discrepancies concerning the main quantities of interest are less than 5 % (inside
the error bars). This represents an important issue, because the presence of different
structures is often assumed to justify some scatter in data trends (Roche et al.
2002).

4. Nusselt number
Experimental results of Niemela et al. (2000) in a cell of aspect ratio Γ = 1/2,

at Pr � 0.7 and Ra spanning over 11 decades, show (to the zeroth order of
approximation) a power-law exponent of 0.309. Our data seem to be consistent
with these results, though differences arise when the Nusselt number is plotted in a
compensated form (figure 15). These deviations are not surprising since, in the range
of Ra and Pr considered, the flow passes through several transitional phases, and a
single power law is expected to be inadequate to describe the Nu scaling in different
regimes (Grossmann & Lohse 2000).

Larger deviations have been found at Pr = 103 (figure 15a), and at Pr = 1
(figure 15d ). In the first case, for Ra before the transition from a steady to an unsteady
flow (Ra < 107), the data are more consistent with a power law having exponent 1/3.
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Figure 16. Nusselt number. Upright triangles: Ra = 109; diamonds: Ra = 108; circles:
Ra = 107; inverted triangles: 5 × 106; and squares: 2 × 106. Small open symbols are extrapolated
from Verzicco & Camussi (2003). Filled squares are extrapolated from Ahlers & Xu (2001).
The error bars are hidden by the size of symbols.

This result agrees with previous data concerning the steady-flow regime (Heslot,
Castaing & Libchaber 1987). Instead, for Ra � 107, the better correspondence is with
the exponent 0.309 mentioned above. As expected from previous work (Verzicco &
Camussi 2003; Castaing et al. 1989), in the case of Pr = 1, the data show a power-law
exponent closer to 2/7 for Ra � 108. At higher Ra , our data are also consistent
with the exponent 0.309, in agreement with the numerical results of Stevens et al.
(2010).

The data are not sufficient to obtain precise values of the Nu–Ra exponent in the
different regimes. However, the approximate value of 0.31, evaluated for the unsteady
simulation at high Pr , can also be consistent with previous experimental results
performed in similar Ra and Pr ranges (Ahlers & Xu 2001; Xia et al. 2002).

In the case of the dependence of Nu on Pr , figure 16 shows the trends of the data
at fixed values of Ra . The Nusselt number for Pr � 1 is essentially independent of Pr .
At Ra = 109, the deviations from a constant value are less than 3.5 %, smaller than
the error bar. These results agree with the experimental data of Ahlers & Xu (2001)
(filled squares in figure 16). For lower Ra , the deviations increase as one approaches
Pr = 1. However, they do not exceed 10 %. At Ra =107, the Nu–Pr trend shows a
small overshoot, while passing from low- to high-Pr regimes. A similar finding is
shown in Grossmann & Lohse (2001). The slope at Pr < 1 is consistent with the
exponent 0.14 found in Verzicco & Camussi (1999).

The independence of Nu with respect to Pr found in our simulations at Ra = 109

differs from the experimental results of Xia et al. (2002), obtained in a cell of aspect
ratio Γ = 1 at similar Ra and Pr regimes. Their results show a slight decrease of Nu
with increasing Pr , in agreement with the predictions of Grossmann & Lohse (2001).
However, we should note that Nusselt numbers in cells of Γ = 1 and Γ = 1/2 show
slightly different behaviours (Niemela & Sreenivasan 2003).
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(a) (b) (c)

Figure 17. Isothermal lines of instantaneous temperature fields at Ra =107 and
(a) Pr = 102, (b) Pr =103 and (c) Pr = 104.

5. Reynolds and Péclet numbers
5.1. The non-dimensional form for large Pr

The inadequacy of the free-fall velocity U , and the corresponding time τ =h/U , to
represent the characteristic large-scale dynamics at high Pr was especially evident in
the periodic solutions obtained at fixed Ra = 107 and Pr � 102. Indeed, by monitoring
time signals, we found that the corresponding period, which represents the convective
dynamics well, is much longer than τ and increases strongly with Pr . In particular,
we found that, for these periodic solutions, the whole temperature and pressure-
gradient fields are essentially the same, while the velocity field may vary by several
orders of magnitude in strength while maintaining the same shape. It is worth
noting that this similarity prevails at each time step, not simply on the average
(figure 17).

Practically, if temperature Θ1, velocity u1 and pressure p1 are the fields solved
at Pr = Pr1 � 102, and Θ2, u2, p2 those at Pr = Pr2 � 102 �= Pr1, the simulations
show that Θ2 � Θ1, ∇p2 � ∇p1 and u2 � au1, where a is a constant to be
determined.

Thus, if Θ1, u1, p1 are solutions of (2.1), then Θ2 = Θ1, u2 = au1 and p2 =p1+f (t) are
also solutions of (2.1) only if t2 = t1/a, Ra2 =Ra1, a =

√
Pr1/Pr2 and the advective

term Du/Dt of the momentum equation is equal to zero. These conditions are
easy to derive by putting Θ1, u1, p1 and Θ2, u2, p2 in (2.1) and comparing the
results.

This exercise shows some interesting features: for Ra = 107 and Pr � 102, the
advective term Du/Dt is quite negligible and the solutions are close to the infinite-Pr
limit. The condition Ra2 = Ra1 indicates that this kind of similarity is possible only
at fixed Rayleigh numbers, while t2 = t1/a simply means that the time scales as the
inverse of the velocity. The condition a =

√
Pr1/Pr2 suggests the proper way to make

the equations non-dimensional.
Indeed, it is possible to define a new non-dimensional velocity as v =

√
Pru such

that v1 =
√

Pr1u1 =
√

Pr2u2 = v2. As a consequence, the characteristic velocity will be
V =U/

√
Pr , where U is the free-fall velocity. Using V instead of U to make the
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Boussinesq equations non-dimensional, (2.1) are changed to

1

Pr

Dv

Dt
= −∇p + Θ k̂ +

1√
Ra

∇2v, ∇ · v = 0,

DΘ

Dt
=

1√
Ra

∇2Θ.

⎫⎪⎪⎬
⎪⎪⎭

(5.1)

Non-dimensional temperature and pressure in (5.1) are the same as in (2.1), while
non-dimensional velocity v and time t, respectively, differ from u and t . Note that for
Pr = 1, (2.1) and (5.1) are the same.

The set of equations (5.1) explicitly shows that in the high-Pr limit the convective
dynamics are independent of Pr . There are, however, two more common non-
dimensional forms that have the same feature and are consistent with the similarity
of solutions at Ra =107 and Pr � 102, and could be used instead of the form (5.1).
They are based on the same length scale h, temperature scale �T and pressure
scale Π = ραg�T h as (2.1) and (5.1). The only differences are on the velocity scales
and, as a consequence, on the time scales. One of these non-dimensional forms,
largely used in theoretical work, is one in which the characteristic velocity Uκ is
obtained by comparing the advective and the diffusive term of the temperature
equation: Uκ = κ/h= U/

√
PrRa . The second one uses the characteristic velocity

Uν = αg�T h2/ν = U/
√

Pr/Ra , which appears by comparing the buoyancy term to
the diffusive term of the momentum equation. Note that these diffusive velocities
include the same

√
Pr correction to the free-fall velocity U as the above velocity V .

However, they also modify their dependence on Ra with respect to U .
The only open issue in deciding the suitable form of the equations at large Pr is

the choice of the characteristic velocity, since the other quantities are based on the
same scales. This issue will be considered below.

5.2. Characteristic velocity

The proper characteristic velocity should be able to capture the main strength of the
velocity field. Therefore, typical values of the actual velocities should be reasonably
constant and of the order unity when non-dimensionalized by the characteristic
velocity scale.

Considering the time-averaged peak vertical velocity wpeak = max[u∗
z] as typical of

the convective flow, figure 18 shows the four non-dimensional versions of this velocity
as a function of Pr and for various Ra . Figure 18(a) shows that when the free-fall
velocity U =

√
αg�T h is used to make wpeak non-dimensional, a strong dependence

on Pr arises. Instead, using the other three characteristic velocities mentioned above,
there is some dependence on Pr which tends to disappear as Pr increases (figures 18b,
18c and 18d ). Plotting the same values as a function of Ra (figure 19), one can see that
the characteristic diffusive velocities Uκ = κ/h and Uν = αg�T h2/ν also yield a strong
dependence on Ra (figures 19c and 19d ). This dependence is reduced significantly
for V = U/

√
Pr (figures 19a and 19b). From these plots, it also follows that the

characteristic velocity V leads to a weak dependence of the non-dimensional form of
wpeak both on Pr and Ra at the same time. The same scenario holds if other velocities
are considered as typical of the convective dynamics instead of wpeak . From these
considerations, it appears that the characteristic velocity V and the corresponding
non-dimensional form of (5.1) are most suitable to describe the dependence of the
flow on Ra and Pr in the Pr � 1 regimes. It is evident from figures 18(b) and 19(b)
that corrections to V are necessary to obtain a precise collapse of the curves onto
a straight line. The corrections, however, strongly depend on the kind of velocity
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Figure 18. Peak vertical velocity as a function of Pr . (a) U =
√

αg�T h, (b) V =
√

αg�T h/Pr ,
(c) Uκ = κ/h and (d ) Uν = αg�T h2/ν. Squares: Ra = 2 × 106; circles: Ra = 107; diamonds:
Ra = 108; and upright triangles: Ra = 109.

considered as typical of the flow. Indeed, several choices are possible, and, even fixing
a velocity, the corrections depend on the particular values of Ra and Pr when Pr �= 1.
In figures 20(a) and 20(b), for example, the velocity considered is that corresponding
to the maximum value of the r.m.s. horizontal velocity profiles. In this case, the
behaviour is not monotonic with respect to Pr and Ra , implying that the corrections
also change qualitatively.

For completeness, we show in figures 20(c) and 20(d ) the behaviour of the
temperature fluctuations corresponding to the maximum value of the r.m.s.
temperature profiles as a function of Pr and Ra . In this case, the temperature
fluctuations essentially scale with �T = Th − Tc since the dependence on Pr and Ra
is very weak (power-law exponents in absolute value smaller than 0.08) and can be
considered a second-order effect.

5.3. Reynolds and Péclet numbers

Using the characteristic velocity V =U/
√

Pr , an estimate of the Reynolds number
is Re ∼

√
Ra/Pr and, consequently, Pe ∼

√
Ra , which is independent of Pr . More

precise estimates need the same corrections valid for the characteristic velocity and
imply identical uncertainties, since the actual Reynolds number is given by Re(u∗/V ),
where Re is based on V and u∗ is an actual typical velocity of the flow.

Figure 21 shows the actual values of Re compensated by Pr−1, this being equal to
Pe, as a function of Ra and Pr . In figures 21(a) and 21(b), the Reynolds number is
based on time-averaged peak vertical velocity. Instead, in figures 21(c) and 21(d ), it
is based on the maximum value of the r.m.s. profile of the horizontal velocity.
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Figure 19. Peak vertical velocity as a function of Ra . (a), (b), (c) and (d ) as figure 18.
Circles: Pr = 100; squares: Pr = 101; upright triangles: Pr = 102; diamonds: Pr = 103.

Figures 21(a) and 21(c) include the best exponents of a power-law fitting for Re
(and Pe) values versus Ra . Steady and unsteady solutions are considered separately.
For high Pr , the exponent is higher than the estimated value of 1/2. The maximum
departure is at Pr = 103 and Ra � 107 in the case of the peak vertical velocity
(figure 21a), where the actual exponent is 25 % higher than 1/2. The growth
of the exponent with increasing Pr is qualitatively in agreement with previous
experimental results (Lam et al. 2002). However, the best correction (to the 1/2
power) is logarithmic. For high Pr , it implies that Re/Pr−1 ∼

√
Ra logRaαs . In this

case, the relative corrections with respect to the expected values (the absolute values,
not the exponents) are less than 50 %, with an error growth much smaller than
that resulting from the power-law fit of the actual data. Experimental results show
a transition around Ra =107–109, after which Re ∼

√
Ra (without considering the

dependence on Pr) (Lam et al. 2002; Brown, Funfschilling & Ahlers 2007). For high
enough Rayleigh numbers, no corrections should be necessary but such a transition
is not visible in our simulations.

Figures 21(b) and 21(d ) show the behaviour of Re/Pr−1, and therefore, of Pe, with
respect to Pr at different values of Ra . For each fixed Ra , the data tend to approach
constant values as Pr increases. For Pr � 102, the deviation from a constant trend is
less than 3.6 %. We expect that the Péclet number becomes independent of Pr when
the Reynolds number decreases below the critical limit represented by a solid line in
figure 21(b). (For more details, see the next section.)

At lower Pr (in the region on the left of the solid line), the deviations from the
scaling Pr−1 can exceed 50 %, depending strongly on Ra and on the kind of velocity
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Figure 20. (a, b) Maximum value of the r.m.s. horizontal velocity profiles as a function of Pr
and Ra , respectively. These values are made non-dimensional using the characteristic velocity

V =U/
√

Pr . (c, d ) Maximum value of the r.m.s. temperature profiles as a function of Pr
and Ra , respectively. These values are non-dimensional according to the non-dimensional
temperature Θ (see § 2.1). The symbols in (a) and (b) have the same meaning as those in (c)
and (d ), respectively.

considered. In particular, in the case of Re based on the peak vertical velocity
(figure 21b), the deviation increases with increasing Ra . If we consider Pe instead of
Re, the former slightly increases with increasing Pr before reaching a saturation, at
least for sufficiently high Ra .

For Ra = 107 and Pr � 1, the power-law dependence of Re on Pr is approximately
Re ∼ Pr−0.71. This is consistent with the results of Verzicco & Camussi (1999). At
Ra = 6 × 105 and in a cell of aspect ratio Γ = 1, these authors found an exponent
varying from −0.73 to −0.94 when Pr increases. The exponent −0.7 was also found
by Niemela & Sreenivasan (2003). They plotted the trend of Re versus Pr over a wide
interval of Pr (0.02 � Pr � 200), using data from experiments of different authors.
The aspect ratio varied between 1/2 and 1, and some data were extrapolated by
holding Ra fixed at 1010. Instead, the data of experiments by Xia et al. (2002) showed
an exponent of −0.95 for high-Pr regimes (10 � Pr � 103), in a cell with Γ = 1, and
Ra between 108 and 1010.

These results seem to confirm the presence of a low-Pr regime, where approximately
Re ∼ Pr−0.7, and a saturation regime at very high Pr (Pr � 102), where Re ∼ Pr−1. The
transition from one regime to another also seems to depend, apart from Rayleigh and
Prandtl numbers, on the aspect ratio of the cell. A smooth approach to the saturation
regime, as shown by our data, implying high uncertainty in the data fit, could explain
the discrepancy in the scaling exponents found by the different authors.
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Figure 21. Re divided by Pr−1 calculated using the time-averaged peak vertical velocity (open
symbols) and the maximum value of the r.m.s. horizontal velocity profile (filled symbols). In
(b) and (d ), squares: Ra = 2 × 106; circles: Ra = 107; diamonds: Ra = 108; upright triangles:
Ra = 109. In (b) the solid line represents Re � 40, which is the saturation limit mentioned
in § 6.

6. Boundary layers
6.1. Boundary-layer thicknesses versus Pr and Ra

Figure 22 shows the global profiles (i.e. averaged in time and over the horizontal
sections) of the r.m.s. of the horizontal velocity at fixed Pr = 1 and increasing Ra
(figures 22a and 22b), and at fixed Ra = 109 and increasing Pr (figures 22c and 22d ).
These profiles vary from one flow regime to another, depending on the mean flow
structures and on Ra and Pr . The global profiles of the temperature r.m.s., in general,
show a more regular shape, both with respect to Ra (figures 23a and 23b) and with
respect to Pr (figures 23c and 23d ). In the following discussion we use the height
corresponding to the peak values of these profiles to define the viscous- and the
thermal-boundary-layer thickness, respectively. In the next section (§ 6.2), we compare
the main features of these global profiles with those of the corresponding local ones.

In agreement with the Nusselt-number behaviour, low sensitivity to the Prandtl
number has also been found in the thermal-boundary-layer thickness (δT ) for Pr > 1.
In particular, δT , based on the time-averaged temperature–r.m.s. profile, slightly
increases with Pr , eventually approaching a constant value (open symbols in figure 24).
The independence of δT , and of Nu , of Pr for Pr � 1, is a consequence of the
saturation of the viscous-boundary-layer thickness (δU ) with increasing Pr (filled
symbols in figure 24). The saturation of the viscous-boundary-layer thickness is due
to the fact that δU cannot indefinitely grow as Re decreases (Pr increases), at least
because the cell has a finite size. Figure 25(a) shows δU as a function of Re. The δU
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Figure 22. Global profiles of the horizontal-velocity r.m.s. (a, b) at Pr = 1 and increasing
Ra; (c, d ) at Ra = 109 and increasing Pr . (b, d ) Enlargements of the lower wall regions with
grid-point distribution.

saturation roughly starts at Re � 40, when Re is calculated using the time-averaged
peak vertical velocity. At lower Re, the scatter of δU around a saturation value
(nearly 1/10 of the cell height) is mainly related to the presence of different mean
flow structures found at different Ra and high Pr . One would expect that the viscous
thickness, when it saturates, reaches half of the cell. A saturation at 1/10 the cell
height, instead of 1/2, basically derives from the definition of δU . The presence of a
large-scale circulation, even at very high Pr , implies at least two peaks in the global
profiles of the horizontal-velocity r.m.s., and therefore a thickness smaller than 1/2.
Consequently, the saturation of δU can also be interpreted as a saturation in the
vertical size of the large-scale circulation.

If we consider the thermal boundary layer to be driven by the viscous one, its
thickness should also saturate, as it actually does. The Pe independence of Pr at
sufficiently high Pr (figure 21b) is consistent with the corresponding saturation of δT

(and vice versa).
It thus seems that the saturation of δU , owing to a finite cell, induces a saturation on

δT . This reflects the behaviour of the Péclet number, which turns out to be independent
of Pr . Consequently, Re ∼ 1/Pr . Thus, Re strongly decreases for increasing Pr , which
implies a fast saturation of δU with increasing Pr , and a fast approach of all the flow
to the infinite-Pr limit.

The saturation argument, however, does not fully explain two unexpected
behaviours: the slight increase of the thermal-boundary-layer thickness with increasing
Pr before the saturation (figure 24), and the independence of Nu of Pr at Ra = 109

and Pr � 1 (far from saturation) (figure 16). In the first case, if we consider a
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Figure 23. Global profiles of the temperature r.m.s. (a, b) at Pr = 103 and increasing Ra;
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δT that is inversely related to the Péclet number, as predicted by the Prandtl–
Blasius theory, δT should decrease as Pr increases, since Pe slightly increases with
increasing Pr (figure 21b). This disagreement between δT and Pe could be due to
uncertainties in their definition, since in both cases, the data trends show only a
weak dependence on Pr . However, the Péclet number shows a slightly increasing
trend with increasing Pr for sufficiently high Ra (Ra � 108), even when calculated
by large-scale velocities different from that considered in figures 21(b) and 21(d ). On
the other hand, δT shows an increasing trend with Pr even when calculated as the
depth corresponding to the intersection between diffusive and the convective heat-
flux profiles (−〈∂Θ/∂z〉A = 〈uzΘ〉A), or as the depth corresponding to the intersection
between the tangent to the temperature profile at the wall and the local tangent to
the temperature profile in the bulk region. (Note that the last definition slightly differs
from the usual one based on the tangent to the temperature profile at the wall and
yields slightly different results.)

A possible explanation for the increasing behaviour of δT with Pr (for Pr � 1)
is that the thermal boundary layer is dragged up by the viscous boundary layer,
as it becomes thicker than the thermal boundary. Indeed, figure 24(b) shows a
strong discontinuity in the δT trend just when the viscous boundary layer becomes
thicker than the thermal one. On the other hand, the idea that the viscous boundary
layer, when thicker, governs the thermal one has been used widely (Kraichnan 1962;
Shraiman & Siggia 1990; Grossmann & Lohse 2000). The above arguments on the
saturation regime are essentially based on this hypothesis.

Instead, δT decreases with increasing Pr , that is, with increasing Péclet number
(showing the expected inverse relation between δT and Pe) at low Pr before the
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Figure 24. Boundary-layer thicknesses based on global r.m.s. profiles versus Pr . (a) Ra =
2 × 106, (b) Ra = 107, (c) Ra = 108 and (d ) Ra = 109. Bold open symbol–dotted line: thermal
boundary layer; filled symbol–dashed line: viscous boundary layer. The difference between the
top- and the bottom-plate values is generally much smaller than 1 %, both for thermal- and
viscous-boundary-layer thicknesses. In few critical simulations, at lower Pr , the difference is
smaller than 3 %. In any case, these differences are within the symbol size. This holds for all
the figures concerning boundary-layer thicknesses.
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Figure 25. (a) Viscous-boundary-layer thickness with respect to the actual Reynolds number.
Filled symbols: Re calculated using the maximum values of the horizontal-velocity r.m.s.
profiles; open symbols: Re calculated using the time-averaged peak-vertical velocity.
Squares: Ra = 2 × 106; circles: Ra = 107; diamonds: Ra = 108; upright triangles: Ra = 109.
(b) Thermal-boundary-layer thickness with respect to the actual Péclet number at Pr = 103.
Filled symbols: Pe calculated using the maximum values of the horizontal-velocity r.m.s.
profiles; open symbols: Pe calculated using the time-averaged peak-vertical velocity.
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Figure 26. Boundary-layer thicknesses based on global r.m.s. profiles. (a) Pr = 1000,
(b) Pr = 100, (c) Pr = 10 and (d) Pr = 1. Notation same as in figure 24.

change of hierarchy occurs between thermal and viscous boundary layers (figure 24b)
at higher Pr , prior to the saturation because of the cell height (Breuer et al. 2004).

Overall, it thus seems that there are two opposite effects acting on the thermal-
boundary-layer thickness: the Péclet-number influence, which tends to bring it down,
and the viscous-boundary-layer influence, which tends to lift it up. The balance
between the two effects determines the boundary-layer thickness.

In the range of Ra simulated here, generally the viscous-boundary-layer effect is
slightly stronger than the Pe effect when δT is calculated using the peak values of
the r.m.s. temperature profile. When δT is calculated as the intersection between the
tangent to the temperature profile at the wall and the straight line of the central-
temperature value across the cell height, the two effects mostly balance each other and
δT becomes almost constant with Pr , even far from saturation. As a consequence, the
Nusselt number, because of the exact relation (2.4), reflects the same trend, resulting
in its being independent of Pr (even at Ra = 109 and Pr � 1).

For completeness, we now show the trends of the boundary-layer thicknesses with
respect to the Rayleigh number. Figure 26 shows the viscous- and thermal-boundary-
layer thicknesses as a function of Ra . The high scatter of δU for various Ra and high
Pr (figures 26a and 26b) is due to the different mean flow structures. The viscous- and
thermal-boundary-layer thicknesses are generally expected to follow the same trend
in the Prandtl–Blasius theory. However, because of the δU saturation with respect
to Re (figure 25a), the trend of δU with respect to Ra deviates from that of δT at
high Pr . In agreement with previous results (Belmonte, Tilgner & Libchaber 1993;
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Figure 27. Global profiles of the horizontal-velocity r.m.s. (a) at Pr = 1 and increasing Ra;
(b) at Ra =109 and increasing Pr . The profiles are normalized with respect to their maximum
value and the corresponding height.

Verzicco & Camussi 2003), we have also found a difference between the trends of δU

and δT at lower Pr (figures 26d and 30a). This deviation at Pr = 1 seems to be a
temporary effect, due to a difference in the mean flow structures, tending to disappear
at Ra > 1010 (Verzicco & Camussi 2003).

The exponent of a power-law fitting δT versus Ra is approximately 0.3, if we
consider the data at fixed Pr for Ra � 107. Figure 25(b) shows the behaviour of
thermal-boundary-layer thickness with respect to Pe at fixed Pr = 103. The two
data trends are evaluated using different typical velocities for the calculation of Pe.
When the peak vertical velocity is considered, the trend seems to be consistent with
the Prandtl–Blasius theory. However, it would be more reasonable to consider an
horizontal velocity as characteristic of the boundary layers at the plates, but, in this
latter case, no consistency in the results has been found.

While a few qualitative consistencies of the boundary-layer thicknesses exist with
the Prandtl–Blasius theory, we find no similarly in velocity profiles. Indeed, the profiles
do not show a constant shape close to the plates, either in terms of Ra (figure 27a),
or in terms of Pr (figure 27b). In the first case, no similarity has been found even
at Pr = 1, when the mean flows show similar large-scale structures and the local
profile shapes (see later) are similar to each other (figure 28a). This is in contrast
to experimental results shown in Lam et al. (2002), concerning a cylindrical cell of
aspect ratio 1.

6.2. Local and global thicknesses

An open question is how the boundary-layer thicknesses based on the global profile
(averaged in time and over the horizontal sections) are related to those based on local
profiles (averaged only in time) (Ahlers et al. 2009). The boundary-layer thickness is
actually a local feature of the mean flow, even if, from the theoretical point of view, the
global profiles and the corresponding thicknesses are of main interest, because they
are strongly characterized by symmetry and show exact analytical relationships that
can be used in the models (see, for example, Grossmann & Lohse 2000). Moreover, in
the presence of different mean flow structures and flow inversions inside the boundary
layers, it is not easy to compare the local profiles and evaluate local boundary-layer
thicknesses. For this reason, area-averaged profiles, characterized by a single value,
are preferred in data analysis. The issue is to understand if, and how, the global
profiles can represent local features.
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Figure 29. Viscous-boundary-layer thickness distribution along the bottom plate in a vertical
section corresponding to the maximum development of the mean flow circulation. Circles: λmax
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upright triangles: λrms
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U . (a) Ra = 108

and Pr = 1; (b) Ra = 108 and Pr = 103. The strong discontinuity of the local thickness λmax
U

at the central axis and close to the sidewall is due to the flow structure characterized by a
descending circulation at the central axis and an ascending one close to the sidewall in (a) and
vice versa in (b).

When the flow shows opposite circulations, the area-averaged velocity profile
tends to disappear. As a consequence, in order to define a viscous-boundary-layer
thickness based on a global velocity profile and valid for all the simulations, the
r.m.s. of the area-averaged horizontal velocity has to be considered. Comparing the
local and global profiles of the r.m.s. of the horizontal velocity, we found a good
similarity (figure 28a) when the mean flow consists of two opposite toroidal structures
(Pr < 100). Instead, a poorer correspondence has been found for flows at Pr � 100,
characterized by lower Reynolds numbers and multi-jet structures, and therefore
having no well-developed viscous boundary layers (figure 28b).

We analyse the local viscous-boundary-layer thickness λU (figure 29), calculated
using the maximum of the local profiles of the horizontal velocity (λmax

U ) as well
as the horizontal-velocity r.m.s. (λrms

U ) and find the following result: for Pr = 1,
these thicknesses, averaged along the section of maximum circulation development
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open upright triangles: 〈λT rms〉r . (a) Fixed Pr = 1; (b) fixed Ra = 108.

(excluding narrow regions close to the sidewall and the central axis), basically are
the same as the corresponding global thicknesses: 〈λmax

U 〉
r � δmax

U and 〈λrms
U 〉

r � δrms
U

(figure 29a). For higher Pr , however, the area-averaged profiles of the horizontal
velocity almost vanish and δmax

U loses its meaning, while a satisfactory correspondence
between 〈λmax

U 〉
r and δrms

U is found (figure 29b). In particular, in the simulations at
Pr = 103, we found that δrms

U differs from 〈λmax
U 〉

r by less than 3 %. Thus, for higher Pr ,
the global thickness δrms

U adequately represents the local thickness λmax
U based on the

maximum of the horizontal-velocity profiles (figure 30b). This is not surprising since
the velocity fluctuations strongly decrease as Pr increases. At Pr ∼ 1, δrms

U generally
underestimates λmax

U (discrepancies around 8 %), but the two thicknesses follow the
same trend at sufficiently high Ra (figure 30a).

Similar analysis has been performed for the thermal-boundary-layer thicknesses.
In particular, we have compared the local and global thicknesses based on the
temperature–r.m.s. profiles. In this case, a satisfactory agreement between the trends
of the two thicknesses have been generally found (figure 30), since the Péclet numbers
are high enough (Pe > 103) to obtain sufficiently developed thermal boundary layers.
Indeed, we generally found λrms

T to be quite uniform along the plate, except for narrow
regions close to the sidewall. The higher discrepancies are at Pr =1 and lower Ra ,
corresponding to smaller Pe (figure 30a).

As a conclusion, in the range of Ra and Pr explored in this study, the trends of
the local boundary-layer thicknesses are essentially the same as those of the global
ones. Given the higher reliability in a practical calculation, it thus stands to reason
that we have considered the thicknesses based on the global profiles.

7. Conclusions
In this study, we have investigated the main features of the thermal convection

at moderate Ra over a range of Prandtl numbers with emphasis on high values.
By direct numerical simulations of the Boussinesq equations in a cylindrical domain
of aspect ratio 1/2, we have replicated the set-up of several experimental and past
numerical works. In particular, by simulating the convective flow at quite high Pr
(Pr ∼ O(103)), we have explored an Ra–Pr range, which, until now, was approachable
only through laboratory experiments or simplified numerical models.

The high-Pr flows are generally characterized by high Péclet numbers and low
Reynolds numbers. This implies that the temperature field is mainly governed by
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advective dynamics, and the velocity field is mainly governed by diffusive phenomena.
The combination of these opposite features generates the convection dynamics at
high Pr . The combination of these different dynamics is reflected in the typical large-
scale velocities and in the corresponding typical time scales. The free-fall velocity
U =

√
gα�T h, arising from the balance between the inertial term and the buoyancy

term of the momentum equation, was inadequate for representing the typical velocities
at high Pr , which are much smaller. The usual alternative velocities, characteristic
of the diffusive dynamics, obtained by balancing the buoyancy and viscous terms of
the momentum equation, or by comparing the advective and diffusive terms of the
temperature equation, were also inadequate (this time because of their dependence
on Ra). By scaling the results from several simulations, we found that the suitable
characteristic velocity of the large-scale convective dynamics is V = U/

√
Pr . This

velocity represents a synthesis between the diffusive characteristic velocities and the
free-fall velocity, maintaining the dependence of diffusive velocities on Pr , and the
dependence of the free-fall velocity on Ra .

Using this new characteristic velocity, we derived the suitable non-dimensional form
of the Boussinesq equations for high-Pr flows, and a rough estimate of Re and Pe
as functions of Ra and Pr , obtaining Re =

√
Ra/Pr , and, consequently, Pe =

√
Ra

independent of Pr . From the comparison of these estimates with the actual Re and
Pe trends, it was clear that they represent a good first-order approximation of the
Re and Pe behaviour, but a single scaling was insufficient to match all the data in
the range of simulated Ra and Pr: a power-law relation did not always appear to be
appropriate to fit the data exactly, and seem to require logarithmic corrections to the
main power-law trends. Further uncertainties derive from the velocity that one defines
as typical of large-scale dynamics. Nevertheless, the Re and Pe estimates (mentioned
above) are able to capture the main trends, especially with respect to Pr , when Pr is
sufficiently high and a saturation regime is approached.

The saturation regime is a main feature of the confined flows with increasing
Pr . It is due to the fact that the viscous boundary layer, induced by the large-
scale recirculations, cannot indefinitely grow as Re decreases (Pr increases), at least
because the cell has a finite size. We found that, in a cell of aspect ratio 1/2, the
saturation of the viscous-boundary-layer thickness starts approximately at Res � 40
(with Re calculated using the time-averaged peak vertical velocity). The saturation
of the viscous boundary layer induces a saturation in the thermal boundary layer
thickness (which is apparently influenced by the viscous boundary layer when the
latter is thicker than the former). The independence of Péclet number of Pr reflects
the saturation of the thermal boundary layer. Consequently, Re ∼ 1/Pr , implying a
fast saturation of the viscous boundary layer with increasing Pr .

The Nusselt number is strongly related to the thermal boundary layer, since the
former is determined by the temperature drop which occurs close to the horizontal
plates, but it is not strongly affected by flow structures. Our simulation data show Nu
independent of Pr , for Pr � 1. This result, even characterizing the highest Ra simulated
(Ra = 109), can be justified by saturation arguments only when the saturation occurs –
that is, for sufficiently high Pr (Pr � 100). At lower Pr , the independence of Nu of Pr
is due to the balance between two opposite effects acting on the thermal boundary:
the Péclet number influence, which tends to lower it (since Pe slightly increases
with increasing Pr before the saturation is reached), and the viscous-boundary-layer
influence, which tends to enhance it (since the viscous boundary layer grows with
increasing Pr). In general, the thermal dissipation is turbulent-like even when the
viscous dissipation is laminar-like.
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By using previous results at lower Pr and comparing them to our data, we
confirm the presence of a lower Pr regime, where approximately Re ∼ Pr−0.7, and a
saturation regime at high Pr , where Re ∼ Pr−1. The beginning of the saturation regime
depends on a critical Reynolds number (Res), beyond which the viscous boundary
layer, or, conversely, the large-scale circulation, saturates to a constant size: roughly
2/10 of the cell depth is occupied by the boundary layers and 8/10 by large-scale
circulations, when the viscous-boundary-layer thickness is based on the r.m.s. profile
of the horizontal velocity. However, the approach to saturation seems to be smooth,
and the saturation regime seems to affect (or to be affected by) the preceding Pr
interval, until the hierarchy between thermal- and viscous-boundary-layer changes.

The presence of the viscous boundary layer, however, does not seem to be a
necessary condition for the observation of a saturation regime. Indeed, a qualitatively
similar Re–Pr scaling was also obtained in simulations carried out under a free-slip
boundary condition (Breuer et al. 2004). In this case, it is possible to hypothesize the
saturation of the large-scale circulations instead of the viscous boundary layer, but the
other arguments on the interaction between viscous and thermal boundary layers do
not seem to be valid. However, even without viscous boundary layers, the large-scale
motion generates strong velocity gradients close to the walls, which can substitute
the viscous-boundary-layer arguments in the explanation of the thermal-boundary-
layer behaviour at high-Pr regimes. In spite of its unclear role, the viscous boundary
layer is the base of many models for scaling predictions of thermal convection. The
usual assumption is to consider the Prandtl–Blasius theory (Grossmann & Lohse
2000), which regards the temperature field as a passive scalar and implies similarity
solutions. In the Ra–Pr range considered here, inside the boundary layers we found
no similarities with respect to Ra and Pr , either in velocity profiles or in temperature
profiles. It should, however, be mentioned that in the present study, the boundary-layer
thicknesses have been estimated from the r.m.s. peak positions, while, in Grossmann &
Lohse (2000), they are essentially defined using the slopes at the wall of the mean
profiles. It is not clear if the different definitions can cause any disagreement. This
point deserves further investigation.

The large-scale simulations in this paper were possible due to the support
and computer facilities of the Consorzio interuniversitario per le Applicazioni
di Supercalcolo Per Università e Ricerca (CASPUR). We gratefully acknowledge
Drs F. Massaioli and G. Amati for their continuous technical support. The work
formed part of the PhD thesis of G.S. at the University of Trieste.
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